domingo, 30 de noviembre de 2014

5.6 PROBLEMAS DE OPTIMIZACION Y DE TASAS RELACIONADAS

Problemas de Optimización y de Tasas Relacionadas
La optimización se refiere al tipo de problema que se ocupa de la determinación de la forma más apropiada para realizar cierta tarea.
Con el fin de resolver estos problemas, se calculan los valores mínimos y máximos de la función.
Estos incluyen encontrar la distancia mínima para llegar a un punto, el costo mínimo para hacer determinada operación, etc.
La función cuyo máximo o mínimo necesita determinase por lo general está sujeta a ciertas restricciones que deben tomarse en cuenta.
Estos problemas son diferentes a los problemas utilizados para encontrarlos valores mínimos o máximos locales.
Los Problemas de optimización sólo se ocupan de los valores máximos o mínimos que una función puede tomar y no del mínimo o máximo en un intervalo.
Es decir, la optimización busca el mínimo o máximo global (absoluto) y no el local.
El mínimo o máximo absoluto es el mayor entre el mínimo o máximo local, respectivamente.
Puede haber casos, donde el mínimo o máximo global no existe para una función.
En estos el dibujo de la gráfica para la función correspondiente puede ayudar en gran manera.
Hay algunos pasos que deben seguirse con el fin de desglosar un problema de optimización:
1) Lo primero y más importante es identificar las variables y constantes de la función. Esto ayuda a determinar la parte de la función que será minimizada o maximizada.
2) Escribir la fórmula adecuada para la función particular, para lo cual tenemos que calcular el mínimo o máximo.
3) Ahora, la fórmula será escrita en términos de una sola variable, es decir, f(r).
4) Establezca la diferenciación de f(r) a 0, f'(r) = 0, y resuelva a través de observar todas las limitaciones y otros valores críticos para encontrar los valores extremos.
Por ejemplo, considere la función, g(r) = -r2 + 4r – 2.
Y siendo el intervalo en el cual el valor máximo será encontrado [0, 1].
Calculando g'(r) se obtiene,
g’(r) = −2r + 4 = 0
Por lo tanto, 2 viene a ser un valor crítico, luegoreemplazando el 2 en la función g (2) = 2.
Ahora sustituyendo uno por uno los valores del intervalo en el lugar de r, obtenemos,
g (0) = −2 g (1) = 1
Se puede observar, que el valor máximo de g(r) en [0, 1] es 2.
Un tipo parecido de problema es el problema de las tasas relacionadas.
Se trata de un problema en el que se proporciona la tasa de variación de al menos una variable de la función y en el problema se necesita buscar la otra tasa de variación.
También hay ciertas reglas simples para resolver estos problemas:
Considere que f(a) sea una función con dos variables a y b, las cuales cambian con el tiempo y la tasa de variación de a es dada con el tiempo, es decir,  .
1) En primer lugar, encontrar la derivada de f(a), es decir, f'(a)
2) Ponga el valor de a en la ecuación
3) Entonces multiplíquelo con  para obtener 
Aplicar las reglas en un ejemplo proporcionará una mejor comprensión:
Suponga que la pregunta dada dice lo siguiente:
Se está bombeando aire a un globo esférico de 4 cm de radio a 5 cm3 / seg.
Entonces,el ritmo de cambio del radio del globo necesita ser calculado.
Se puede observar que el radio y el volumen son las variables de las funciones correspondientes.
 es dada y es igual a 5 cm3/seg y  necesita encontrarse.
Como V= 4 r3 / 3.
Diferenciando ambos lados, se obtiene .
Ahora sustituyendo el valor de en esta ecuación, se obtiene  cm /seg.

5.5 CALCULO DE APROXIMACIONES USANDO LA DIFERENCIAL

Cálculo Utilizando el Enfoque Diferencial
No es para maravillarse que las ecuaciones diferenciales se utilizan en gran manera en el día a día para resolver problemas de cálculo complejos. Se utilizan en el campo de la investigación, física, matemáticas, e incluso la química no se queda intacta. Algunas áreas muy importantes donde se realiza el uso de las ecuaciones diferenciales se listan a continuación:
1.Cálculo de Máximos y Mínimos: Las aplicaciones de negocios requieren del cálculo de los valores máximos y mínimos de una función para incrementar su producto y por tanto el porcentaje de ganancia. El uso de la diferenciación para este propósito obtiene resultados inmediatos y con exactitud. Vamos a dar un vistazo a un ejemplo para entender cómo funciona.
Al diferenciar la expresión anterior con respecto a x, que es la variable de entrada. Tenemos, dy/ dx = 2x + 5
en el punto de máximos o mínimos, tenemos el valor de la derivada igual a cero. Por lo tanto, igualando la expresión anterior con cero tenemos,
2x + 5 = 0 x = - (5/ 2)
Ahora, sustituyendo el valor de x conseguido en la expresión actual obtenemos el valor de y para este valor de x.
y = (−5/ 2)2 + 5(−5/ 2) + 4
  = (25/ 4) – 25/ 2 + 4
  = 6.25 – 12.5 + 4
  = −2.25
Las aplicaciones de negocio, las funciones de crecimiento anual, los porcentajes de beneficio, etc. están formulados para llegar a los resultados.
2.Cálculo de la Tasa de Variación de una Reacción Química: Una reacción química consiste en la transformación de uno de los componentes a algún otro componente.
La velocidad a la que se lleva a cabo todo el proceso se denomina tasa de reacción química, la cual es directamente proporcional al cuadrado de la cantidad total del compuesto que se transforma.
Considere una reacción en la que tenemos 50 gramos de una sustancia en el tiempo t = 0, que se convierte a otro componente y solo nos resta 10 gramos del componente en el tiempo t = 1.
Denotemos la sustancia con y.
Entonces sea la velocidad de reacción,
 la cual puede ser convertida a, donde k es un valor constante.
Ahora bien, una expresión más general puede ser,
Vamos a sustituir ahora los valores dados en el problema de la ecuación.
Tenemos,
El valor de c se mantiene como −1/50, porque en el tiempo t = 0 la cantidad de sustancia era 50 gramos.
Esto produce y = −0.12
3. El Uso del cálculo Diferencial en el Censo: El Censo es un cálculo muy importante iniciado por los gobiernos de algunos países. Haciendo el uso de la ecuación diferencial ha logrado que el cálculo completo sea mucho más fácil que antes.
Existen muchas más aplicaciones donde el uso de la ecuación diferencial hace el proceso de cálculo más conveniente.
Algunas de las aplicaciones notables que implican el uso de aplicaciones diferenciales son la conciencia publicitaria, los cálculos de una mezcla de compuestos químicos, el cálculo de selección de híbridos, etc.
En casi todas estas aplicaciones no hay una expresión determinada de antemano por lo que podemos calcular la derivada convenientemente.
En cambio la mayoría de las aplicaciones envuelven la formación de la expresión, que es una función de determinados valores paramétricos.

5.4 ANALISIS DE LA VARIACION DE FUNCIONES

Análisis de la Variación de la Función
Cuando la variación total de cualquier función particular es finita, en ese caso, esa función se conoce como Función de Variación Acotada, que puede ser abreviada como función BV (Bounded Variation por sus siglas en inglés). El gráfico correspondiente de la función BV se dice entonces que se comporta bien en un sentido preciso. La función BV tiene amplias aplicaciones en el campo de las matemáticas, y es utilizada en algunos de los teoremas más importantes, tal como son los Teoremas de Fourier. En el caso de la funciones continuas que contienen sólo una variable, la variación acotada implica la distancia finita cubierta por un punto a lo largo del eje y. Otra clasificación establece que las funciones de variación acotada, tienen la propiedad de intervalo cerrado, son las funciones que se pueden establecer como la diferencia entre dos monótonas acotadas.
La variación Acotada de una función determinada en el intervalo [x, y] puede ser establecida como
Donde S es el conjunto acotado
La variación resulta ser infinita si el conjunto no es acotado. El supremo de S puede ser llamado también como Variación Total o sólo la variación de f y se denota como V (f; x, y) o simplemente V (x).
Existen ciertos teoremas que pueden ser útiles para el análisis de la variación de la función:
1). Si en el conjunto [x, y], la función está incrementando, en ese caso, es la función de variación acotada en el conjunto [x, y] y consecuentemente V [g [x, y]] = g(y) – g(x).
2). Si en el conjunto [x, y] la función es constante, entonces es la función de variación acotada en el conjunto [x, y] y entonces V [g [x, y]] = 0.
Por ejemplo, la función g(r) = c es una función de variación acotada constante en el intervalo [x, y].  | g (ri) – g (ri - 1)| = 0 por cada partición del conjunto [a, b]. Por tanto, V (g, [x, y]) = 0.
3) En el conjunto [x, y] si, g y f son las funciones de variación acotada y c es constante, en ese caso
a). g es una función de variación acotada en el intervalo [x, y].
b). g es una función de variación acotada en cada subintervalo cerrado del intervalo [x, y].
c). cg es también una función BV en el conjunto [x, y].
d). g + f y g –f son BV en el conjunto [x, y]
e). gf es también BV en el conjunto [x, y].
Algunos datos más útiles acerca de estas funciones especiales se pueden establecer como que una función de variación acotada se puede expresar también por la divergencia de 2 funciones crecientes.
Del mismo modo, todas las funciones totalmente continuas son de naturaleza BV, sin embargo, no es necesario que todas las funciones continuas BV deban ser totalmente continuas.
La función f puede ser considerada como BV en el conjunto [x, y] si, la derivada de f se encuentra acotada en [x, y]. Además, cuando dos funciones variación acotada se multiplican entre sí, entonces la resultante es también una función de variación acotada.
Hay algunas propiedades básicas que son seguidas por las Funciones de Variación Acotada:
1) Las Funciones de Variación Acotada pueden tener discontinuidad de primer tipo, es decir, discontinuidad de salto.

5.3 FUNCION CRECIENTE Y DECRECIENTE. MAXIMOS Y MINIMOS DE UNA FUNCION. CRITERIO DE LA PRIMERA DERIVADA

Función creciente y función decreciente
Máximos y mínimos de una función
Criterios de la derivada de primer orden para máximos y mínimos
Concavidades y puntos de inflexión
Criterios de la derivada de segundo orden para máximos y mínimos
Hay ciertas características, o establecidos simplemente como términos, que pueden ser encontrados en las derivadas.
Estos son considerados como las aplicaciones de las derivadas.
Algunas de ellas incluyen:
Función creciente y función decreciente
Máximos y mínimos de una función
Criterios de la derivada de primer orden para máximos y mínimos
Concavidades y puntos de inflexión
Criterios de la derivada de segundo orden para máximos y mínimos
Función creciente y función decreciente: Una de las principales aplicaciones de las derivadas es determinar si la función f está creciendo o decreciendo en un intervalo determinado.
Esto puede encontrarse mediante tomar una único derivada de la función.
Si resulta ser mayor que 0 en cada punto del intervalo dado, entonces es una función creciente.
Por otro lado, si resulta inferior a 0 entonces la función será una función decreciente.
Máximos y mínimos de una función:
Se dice que una función tiene un valor máximo en el punto v, cuando el valor de f(v) es mayor que el valor en cualquiera de los puntos vecinos.
Del mismo modo, cuando el valor es menor que el valor en sus puntos vecinos, entonces ese valor se convierte en el valor mínimo de la función.
Criterios de la derivada de primer orden para máximos y mínimos:
Los relativos máximos o mínimos de la función pueden ser encontrados mediante la búsqueda de la primera derivada de la función.
Si la primera derivada resulta ser mayor que 1, en ese caso, se dice que la función está creciendo sobre el intervalo.
En el caso inverso, cuando la primera derivada resulta ser menor que 1, entonces se dice la que función es decreciente en ese intervalo.

5.2 TEOREMA DE ROLLE, TEOREMA DE LANGRAGE O TEOREMA DEL VALOR MEDIO DEL CALCULO DIFERENCIAL

Teorema de Rolle
Considere una función valorada real que es continua en un intervalo cerrado [a, b] y diferenciable en el intervalo abierto (a, b) tal que el valor de la función es igual en los extremos finales.
Dado que es diferenciable en el intervalo abierto (a, b), por tanto, puede tener tangentes en varios puntos de la gráfica de la función.
Sin embargo, habrá al menos un punto en la gráfica donde la tangente será paralela al eje X y por tanto su pendiente será 0.
Esta es la afirmación del Teorema de Rolle.
El Teorema de Rolle afirma que si f es una función valorada real la cual es continua en el intervalo cerrado [a, b] y diferencial en el intervalo abierto (a, b) tal que f (a) = f (b), entonces existe un punto en el intervalo abierto (a, b) donde la pendiente de la tangente trazada en ese punto es 0.
El Teorema de Rolle se limita a la condición de que el valor de la función en los puntos extremos del intervalo deben ser iguales.
Por ejemplo: el Teorema de Rolle no es válido para la función g(x) = | x |, donde x Є [−1, 1], porque en x = 0, g(x) no puede ser diferenciada lo cual desafía una de las condiciones necesarias para su existencia.


Otro importante teorema en el contexto de las matemáticas es el teorema del valor medio.
El Teorema de Rolle se considera un caso especial del teorema del valor medio.
Según este teorema, si f es una función continua en el intervalo cerrado [a, b] y diferenciable en el intervalo abierto (a, b), entonces existe un punto en el intervalo abierto (a, b) tal que la pendiente de la tangente en ese punto es igual a
De acuerdo con la definición geométrica, si f es continua en [a, b] y diferenciable en (a, b), la pendiente de la recta que une (a, f(a)) y (b, f(b)) es  y f'(c) es la pendiente de la tangente (c, f(c)) para la gráfica de y = f(x).
Entonces el teorema de valor medio dice que si la curva es continua y = f(x) tiene una tangente en cada punto (x, f(x)) para a<x<b, entonces para algún punto (c, f©), donde a<c<b, la tangente a la curva es paralela a la línea que une los puntos (a, f(a)) y (b, f(b)) en la curva.
En este caso, siempre podemos encontrar el punto c \ en (a, b) tal que  = f'(c).
Al relacionar el teorema del valor medio con el concepto de movimiento, se puede ir profundamente.
Supongamos que una motocicleta hace un viaje a una velocidad de 50 km en una hora.
Por lo tanto, su razón promedio en ese instante es 50km/h.
A fin de mantener una velocidad constante de 50km/h, la motocicleta tiene que viajar a 50 km / h durante todo el tiempo completo o, en caso de que la motocicleta frene en ciertos momentos, entonces debe llenar este vacío acelerando en algunos momentos para mantener la razón de 50km/h durante todo el viaje.
Aquí el Teorema del valor medio puede afirmar que durante todo el recorrido, puede haber llegado un punto donde la velocidad real de la motocicleta, coincide con la velocidad media, es decir 50 km / h.
Este teorema, conocido también como el Teorema de Lagrange, tiene una importancia extrema en el cálculo y puede ser útil para la solución de numerosos problemas.
- See more at: http://mitecnologico.com/igestion/Main/TeoremaDeLagrange#sthash.yTneymcE.dpuf

5.1 RECTA TANGENTE Y RECTA NORMAL A UNA CURVA EN UN PUNTO. CURVAS ORTOGONALES

Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma pendiente que la curva en ese punto. Una normal a una curva es una recta que es perpendicular a la tangente de la curva. La tangente y la normal en un mismo punto en cualquier superficie siempre son perpendiculares entre sí.
Diferentes soluciones se pueden utilizar para encontrar la ecuación de la tangente de cualquier curva y = g(x) en los puntos x1, y1. La pendiente de la tangente a la curva y = g(x) en los puntos x1, y1 está dada por g‘(x1),es decir, el valor de la primera derivada de la función en x1, y1.
La ecuación requerida para esta tangente se puede encontrar en la ecuación de la recta y-y1 = m (x - x1).
Así, la ecuación de la tangente en x1, y1 se puede dar como y - y1 = g (x1) (x - x1).
Ahora bien, dado que respecto ala normalla tangente es perpendicular , su pendiente es el recíproco negativo de la pendiente de la tangente así como la pendiente de dos rectas perpendiculares son recíprocas negativas una dela otra.
Por tanto, la pendiente de la normal a la curva y = g(x) en los puntos x1, y1 es −1/g’(x1), donde g’(x1) ≠ 0.
Por lo tanto, la ecuación de la normal a la curva es dada como y – y1 = - (1/g’(x1)) (x – x1).
Si una recta tangente a la curva y = g(x) forma un ángulo Ө con el eje x en una dirección positiva, entonces la pendiente de la tangentes es igual a tan Ө.
Por tanto, la ecuación de la tangente puede ser escrita también como y – y1 = tan Ө (x – x1).
El concepto de tangente y normal contiene dos casos especiales:
1). Si la pendiente de la recta tangente es 0, entonces la recta tangente es paralela al eje x.
En tales casos, la ecuación de la tangente en el punto x1, y1 es y = y1.
2). Si la tangente es perpendicular al eje x, entonces en ese caso, la pendiente tiende al infinito y la recta tangente es paralela al eje y.
La ecuación se convierte entonces en x = x1.
Otro término importante asociado con el concepto de curva es el de las curvas ortogonales.
Cuando dos o más curvas se intersectan perpendicularmente entre sí, entonces se les conoce como curvas ortogonales.
Las tangentes de las curvas ortogonales son perpendiculares entre sí.
Además, el producto de sus pendientes es −1.
Estas propiedades pueden ser muy útiles para la determinación de curvas ortogonales.
Por ejemplo: Supongamos la recta y = (1 +  ) x y la recta y = (1 -  ) x
Encuentre la pendiente de y = (1 +  )x, obtenemos
dy/dx = d((1 +  )x) / dx
= 1 + 
Del mismo modo, para la recta y = (1 - )x, la pendiente resulta ser 1 - 
Multiplicando la pendiente de estas dos rectas, obtenemos
m1.m2 = (1 +  ). (1 -  )
 m1.m2 = - 1
Por tanto, estas dos rectas se dice que son ortogonales, es decir, se intersectan entre sí en ángulo de 90 °.

4.8 DERIVADA DE FUNCIONES IMPLICITAS

Para hallar la derivada en forma implícita no es necesario despejar y. Basta derivar miembro a miembro, utilizando las reglas vistas hasta ahora y teniendo presente que:
x'=1.
En general y'≠1.
Por lo que omitiremos x' y dejaremos y'.
Derivación implicita
Derivación implicita
Derivación implicita
Derivación implicita
Cuando las funciones son más complejas vamos a utilizar una regla para facilitar el cálculo:
Derivación implicita
Derivación implícita 
Derivación implícita

4.7 DERIVADAS DE ORDEN SUPERIOR Y REGLA L' HOPITAL

La derivada de cualquier función determina la tasa de variación en función de la función con respecto a la entrada de la función. Este proceso de encontrar la derivada de una función se puede aplicar en una cascada muchas veces para encontrar las derivadas de orden superior de la función. Por ejemplo, al diferenciar la derivada de primer orden de la función, uno obtendrá la derivada de segundo orden de la función y a través de la diferenciación de la derivada de segundo orden de la función obtendremos la derivada de tercer orden de la función y así sucesivamente. En términos simples diferenciar la derivada de una función dará lugar a una derivada de la función de orden superior por un grado. La derivada de primer orden de la función se representa como,
La derivada de segundo orden de una función se representa como,
La derivada de tercer orden de una función se representa como,
 
Y así sucesivamente. La derivada de segundo orden de la función también se conoce como “g doble prima de y”, donde g es la función en términos de y. De manera similar la derivada de tercer orden de una función también se conoce como “g triple prima de y”, etc. Las derivadas de orden superior de cualquier función pueden derivarse de esta forma hasta que la derivada obtenida es diferenciable en sí misma.
La derivada de segundo orden de una función f(x), que es todavía más diferenciable,
No es posible obtener una derivada de orden superior de la función si la derivada actual de la función no es diferenciable. Para aclarar el concepto de las derivadas de orden superior eche un vistazo al ejemplo citado a continuación. f(x) = 4×3 + 9×2 – 3x + 4 La derivada de primer orden de esta función será,
f’(x) = 12×2 +18x – 3
Por la derivada anterior ser diferenciable es posible al diferenciarla nuevamente obtener la derivada de segundo orden de la función como, f’’(x) = f’(f’(x)) = 24x + 18
Al analizar la derivada de la función anterior se puede ver que esta puede ser aún más diferenciada. Por lo tanto la derivada de tercer orden de la función será,
f’’’(x) = f‘(f’(f’(x))) = 24
Ahora la derivada de cuarto orden de la función se obtiene,
f’’’(x) = f’(f‘(f’(f’(x)))) = 0
Como se puede observar ya no es posible diferenciar la función por más tiempo, por lo tanto detenemos el proceso de diferenciación aquí.
El ejemplo anterior también arroja luz sobre un hecho muy interesante, que es, si f(x) es un polinomio con n como el más alto grado entonces la derivada de mayor orden de tal función será n +1. Una diferencia muy interesante y diminuta entre la notación convencional de la potenciación y la diferenciación se explica más adelante,
f(2)(x)= f’’(x) f2(x) = [f(x)]2
Esta es, la presencia de paréntesis en el exponente denota una operación de diferenciación, mientras que su presencia en sí denota la operación de exponenciación.
La regla de L’Hôspital, también llamada regla de Bernoulli es una parte muy importante del cálculo. Se utiliza principalmente para encontrar las salidas de los límites cuando los límites son de forma intermedia; se utiliza principalmente para las derivadas de las funciones.
Esta regla se utiliza para transformar los límites intermedios en una forma determinada y por tanto, obtener la salida más conveniente.
La definición formal de L’Hôspital es, existen dos funciones f(x) y g(x). Ahora bien, si 
  , además
 es real, entonces de acuerdo a la regla del L’Hôspital,

4.6 FORMULAS DE DERIVACIÓN Y FORMULAS DE DIFERENCIACION

Para funciones más simples, el trabajo de calcular la derivada de una función se puede realizar simplemente usando la definición de derivada. Pero si se da una función compleja, ahora es que vale la pena utilizar la definición de la derivada para el cálculo de las derivadas de la función, dado que si no lo hacemos requeriría muchos cálculos. Con el fin de reducir los cálculos involucrados en el proceso se han introducido una serie de fórmulas de diferenciación.
Junto con las fórmulas se han introducido una serie de propiedades que pueden ser usadas directamente. Algunas fórmulas de diferenciación importantes son,
1 Fórmula de Diferenciación General
, en esta fórmula, c es un valor constante.
, esta es la regla de la potencia de la diferenciación. En esta fórmula, n debe ser exclusivamente un número real.
, lo que significa que cuando un número es diferenciado con respecto a sí mismo producirá uno como resultado.
2 Fórmulas de Diferenciación; Funciones Logarítmicas
, lo que significa que la diferenciación del logaritmo natural de un número con el mismo número producirá la inversa del número como resultado.
, esta ecuación explica que la diferenciación de un logaritmo natural de la función con respecto a la variable de entrada producirá el inverso de la multiplicación de la función con la derivada de la función como salida.
, esta ecuación explica que la diferenciación del logaritmo de una variable con respecto a su variable de entrada dará el inverso de la multiplicación del número con el logaritmo natural del número.
3 Fórmulas de Diferenciación; Funciones Exponenciales
, esta fórmula de diferenciación es interesante dado que establece; la diferenciación del exponente de una variable producirá el exponente de la variable como salida.
, esta regla establece que la diferenciación del exponente de una función producirá la multiplicación del exponente de la función con la derivada de la función como salida.
, esta regla establece que la diferenciación de una constante elevada a la potencia de una variable producirá la multiplicación de la constante elevada a la potencia de la misma variable con el logaritmo natural de la constante.
4 Fórmulas de Diferenciación; Funciones Exponenciales
Las fórmulas mostradas anteriormente se explican por sí mismas y no necesitan ninguna otra explicación.
Todas estas fórmulas de diferenciación también derivan de la definición básica de diferenciación para facilitar el trabajo y reducir la parte de cálculo. Para tener una mejor comprensión del tema, observe el ejemplo que se ilustra a continuación,
Probar que d(arctan x)/ dx = 1/ (1 + x2) es verdadera.
En la ecuación anterior y = arctan x. esto implica que y = tan x. Ahora sustituyendo en la ecuación dada.
d (tan y)/ dx = (1/ cos2x) dy/ dx
(1/ cos2x) dy/ dx = 1
dy/ dx = cos2 x
dy/dx = 1/ (1 + x2)
Vamos ahora a despejar la regla lineal de la diferenciación de la fórmula de diferenciación,
 (f(x) + g(x))’ = limh0 (f(x + h) + g(x + h) – (f(x) + g(x)))/ h

 = limh0 (f(x + h) – f(x) + g(x + h) – g(x))/ h

 = limh0 (f(x + h) – f(x))/ h + limh0 (g(x + h) – g(x))/ h

 = f’(x) + g’(x)
De una manera similar todas las fórmulas diferenciales se pueden despejar de la fórmula básica para la diferenciación