domingo, 30 de noviembre de 2014

4.5 REGLA DE LA CADENA

Esta propiedad asegura que si y = f(x) es una función derivable en un cierto intervalo I,

                                             

z = g(y) es otra función derivable y definida en otro intervalo que contiene a todos los valores (imágenes) de la función f,

                                           

entonces la función compuesta

                                     

definida por (f) (x) = g[f(x)], es derivable en todo punto x de I y se obtiene

                                     

Regla de la cadena para la función potencial

Se sabe que la derivada de una función f(x) = xm es f'(x) = m · xm - 1.
Si en lugar de x se tuviese una función u(x), la derivada de u(x)m

                                   

aplicando la regla de la cadena, será:

                                 [u(x)m]' = m · u(x)m - 1 · u'(x)

Para simplificar la notación, y a partir de ahora, se escribirá simplemente u en lugar de u(x).

Así,
                           

No hay comentarios:

Publicar un comentario